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The development of a second-order integral model for a round turbulent buoyant
jet is reported based on new experimental data on turbulent mass and momentum
transport. The mean and turbulent characteristics of a round vertical buoyant jet
covering the full range from jets to plumes were investigated using a recently devel-
oped combined digital particle image velocimetry (DPIV) and planar laser-induced
fluorescence (PLIF) system. The system couples the two well-known techniques to
enable synchronized planar measurements of flow velocities and concentrations in
a study area. The experimental results conserved the mass and momentum fluxes
introduced at the source accurately with closure errors of less than 5%. The momen-
tum flux contributed by turbulence and streamwise pressure gradient was determined
to be about 10% of the local mean momentum flux in both jets and plumes. The
turbulent mass flux, on the other hand, was measured to be about 7.6% and 15%
of the mean mass flux for jets and plumes respectively. While the velocity spread
rate was shown to be independent of the flow regime, the concentration-to-velocity
width ratio λ varied from 1.23 to 1.04 during the transition from jet to plume. Based
on the experimental results, a refined second-order integral model for buoyant jets
that achieves the conservation of total mass and momentum fluxes is proposed. The
model employs the widely used entrainment assumption with the entrainment coef-
ficient taken to be a function of the local Richardson number. Improved prediction
is achieved by taking into account the variation of turbulent mass and momentum
fluxes. The variation of turbulent mass flux is modelled as a function of the local
Richardson number. The turbulent momentum flux, on the other hand, is treated
as a fixed percentage of the local mean momentum flux. In addition, unlike most
existing integral models that assume a constant concentration-to-velocity width ratio,
the present model adopts a more accurate approach with the ratio expressed as a
function of the local Richardson number. As a result, smooth transition of all relevant
mean and turbulent characteristics from jet to plume is predicted, which is in line
with the underlying physical processes.

1. Introduction
The discharge of waste such as the disposal of wastewater via ocean outfalls or

gaseous releases via chimney stacks often leads to the formation of turbulent buoyant
jets in the initial dilution stage where the discharge-induced turbulent mixing is the
dominant mechanism for the dilution of pollutants in the ambient fluid. Quantifying
the entrainment and mixing processes is a key element for both the optimal design of
the discharge facilities and the related environmental impact assessment.
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Integral models, which are based on the conservation equations of mass, momen-
tum, buoyancy and (where appropriate) species concentration fluxes, are widely used
in engineering practice for the prediction of initial dilution for these buoyant jet
discharges. Standard references can be found in, for example, Fischer et al. (1979).
For a round turbulent buoyant jet, numerous experimental investigations have been
conducted in the past few decades and the results provided support for the inte-
gral modelling approach. Corrsin & Uberoi (1950) reported an early study on the
characteristics of a heated turbulent air jet. Recognizing that the measurements by
Corrsin & Uberoi might not be far enough downstream to attain self-preservation for
the turbulence quantities, Wygnanski & Fiedler (1969) conducted a comprehensive
study of the mean velocities and turbulence fluctuations in the truly self-preserving
range of a jet with hot-wire anemometer. Their work became a frequent reference
for jet studies. However, their measurements showed a significant shortfall in axial
momentum flux conservation (Baker 1980; Seif 1981). Capp (1983) and George (1990)
attributed this deficiency to the existence of recirculation with a return flow induced
by the limited size of the experimental facilities. Panchapakesan & Lumley (1993a, b)
performed a careful examination on a round air jet using a x-wire hot-wire probe
mounted on a moving shuttle. The shuttle was used to eliminate errors due to flow
reversal in the intermittent region. The turbulent characteristics were analysed to
second and third moments and reported in great detail. Hussein, Capp & George
(1994) performed a similar examination on an air jet in a much larger facility than
Wygnanski & Fiedler (1969) using burst-mode laser Doppler anemometry (LDA),
stationary hot-wire (SHW) and flying hot-wire (FHW) probes. The results of LDA
and FHW differed substantially from those of SHW (including a thinner velocity
width measured by LDA and FHW), raising doubt on the validity of the traditional
SHW technique for turbulent jets. Their results were mostly in good agreement with
Panchapakesan & Lumley (1993a, b).

For plumes, the experimental studies reported in the literature are relatively scarce.
George, Alpert & Tamanini (1977) measured the velocity and temperature in an
air plume simultaneously using a hot-wire probe combined with a cold-wire for
temperature detection. They found that the turbulent mass flux constituted about
15% of the total mass flux. The velocity width was determined to be wider than the
temperature width, which is contrary to the jet case and also opposite to the findings
of Rouse, Yi & Humphrey (1952). All measurements were made at a short distance
from the nozzle of 8, 12 and 16 diameters downstream and therefore the assumed
self-similarity may not be strictly valid (List 1982). Papanicolaou (1984) pointed out
the problem of using temperature as the scalar indictor in plume experiments as the
temperature-based methods cannot achieve sufficient accuracy in the far field. He
performed a comprehensive experimental study on vertical buoyant jets from jet to
fully developed plume regime in water using a combined LDA and laser-induced
fluorescence (LIF) technique. The measurements were taken in a region from 20D to
100D, thus extending much further than George et al. (1977). The results were reported
in Papanicolaou & List (1988). The velocity width obtained for the plume was similar
to Rouse et al. (1952) but much thinner than George et al. (1977). However, their LIF
measurements overestimated the mean concentration by up to 20%, which the authors
attributed to the absorption of rhodamine on the scattering seeding particles used for
LDA. In an attempt to resolve the disagreement among the published plume data,
Shabbir & George (1994) carried out another comprehensive experimental study on
plumes using two-wire and three-wire probes to simultaneously measure the velocity
and temperature. Due to the long experimentation time (a few hours), they made a
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special effort to ensure that the ambient air was not self-contaminated and stratified.
The results obtained were similar to George et al. (1977) but differed substantially
from Papanicolaou & List (1988), especially in the velocity spread rate. However,
their measurements might be subject to errors associated with SHW, and the fact that
the data were taken within a relatively short distance from the source (less than 30D).
Good reviews on buoyant jets include Fischer et al. (1979), Chen & Rodi (1980) and
List (1982).

Most existing integral models consider only the mean mass and momentum fluxes
in the set of conservation equations. Hence, they can be referred to as first-order
integral models. Although the first-order models give reasonable results for gross
prediction, improvement is needed in several areas. First, the contribution of turbulent
mass flux is commonly ignored by assuming that it is negligibly small compared to
the mean mass flux (e.g. Fischer et al. 1979; Noutsopoulos & Yannopoulos 1987;
Jones & Baddour 1991). The few models that do account for the contribution treat
it as a fixed percentage of the mean value (e.g. Wood, Bell & Wilkinson 1993).
In reality, the percentage of turbulent mass flux is not necessarily small and may
vary substantially for the buoyant jets in different regimes (momentum-dominated,
transitional or buoyancy-dominated) and different environments (cross-flows, waves,
etc.). Thus there is a need to quantify the contribution of turbulent mass flux to
further improve the prediction. Second, the first-order integral models typically use
only the mean momentum flux for total momentum flux conservation. An argument
for this assumption is that the momentum flux induced by turbulence is mostly
neutralized by the contribution from the streamwise pressure gradient (e.g. Wood
et al. 1993). However, after the neutralization, the leftover part may still not be
negligible and hence refinement is necessary for better quantification. Third, there
remains insufficient experimental evidence to confirm a common hypothesis in the
first-order models that the width ratio of concentration to velocity is constant from jet
to plume. An integral model that incorporates the variation of both mean quantities
as well as second-order turbulent quantities such as turbulent mass and momentum
fluxes can be termed a second-order integral model due to the improvement in
accuracy.

The objective of the present study is to develop a second-order integral model
for a vertical round turbulent buoyant jet. To support the development, experiments
were conducted to investigate both the mean and turbulent characteristics of the
buoyant jet covering the full range from jet-like to plume-like. The experiments
adopted a combined digital particle image velocimetry (DPIV) and planar laser-
induced fluorescence (PLIF) approach (Law & Wang 2000). In the following sections,
the second-order integral model is first derived based on the conservation equations
for total mass and momentum fluxes. The newly introduced unknown variables in the
model are highlighted. Then the experimental set-up is described and results reported
with a comprehensive assessment of the data quality. Finally the set of equations for
the second-order integral model are summarized with the variables properly modelled
based on the experimental results.

2. Governing equations
For an axisymmetric turbulent buoyant jet within the Boussinesq range, neglecting

the molecular diffusion (which is small compared to the turbulent diffusion), the
Reynolds-averaged governing equations can be written in cylindrical coordinates
(radial direction r, axial direction z, azimuthal direction θ) as
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continuity:
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where u, w and v are the velocity components in the r-, z- and θ-directions respectively,
c the passive scalar concentration, g the gravitational acceleration, ρa the ambient
fluid density, and ∆ρ the local density difference with respect to ρa. The concentration
c in (3) can be replaced by the effective gravitational acceleration ∆ (= (∆ρ/ρa)g) to
yield the buoyancy transport equation.

Equation (2) is obtained by approximating the streamwise pressure gradient term
in the original Navier–Stokes equation with the term ∂u′2/∂z, i.e. (see e.g. Hussein et
al. 1994 and Shabbir & George 1994):

− ∂p̄

ρa∂z
≈ ∂(u′2 + v′2)

2∂z
≈ ∂u′2

∂z
. (4)

According to Hussein et al. (1994) and Panchapakesan & Lumley (1993a, b), the
turbulent intensity in the azimuthal direction (v′2) is virtually identical to that in the
radial direction (u′2) for both jets and plumes. Integrating the continuity equation
(1) across the buoyant jet yields the relationship between the mean radial and axial
velocities:

ū = −1

r

∫ r
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r dr. (5)

With the help of (5), equations (2) and (3) can be integrated over the entire
cross-sectional area of the buoyant jet to yield
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Equation (6) is the second-order axial momentum balance equation, with the left-
hand side representing the rate of change of total momentum flux with respect to
z and the right-hand side being the local buoyancy flux. The total momentum flux
(M = MM +MTP ) here has already incorporated the turbulent momentum flux and
the contribution of streamwise pressure gradient (we use MTP to represent the sum of
the two), which are of second-order magnitude compared with the mean momentum
flux (MM). The following equations are used to compute MM and MTP :

MM = 2π

∫ ∞
0

w̄2r dr, (8)

MTP = 2π

∫ ∞
0

[w′2 − u′2]r dr. (9)
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Equation (7) is the second-order mass flux conservation equation which dictates
that the total mass flux (H = HM + HT ) should be conserved in a buoyant jet. The
mean and turbulent mass fluxes, HM and HT , are defined by

HM = 2π

∫ ∞
0

wcr dr, (10)

HT = 2π

∫ ∞
0

w′c′r dr. (11)

To account for the turbulent momentum and mass fluxes in the integral model, we
define two variables, kM and kH , as the ratios of total flux to mean flux for momentum
and mass respectively:

kM = 1 +
MTP

MM

, (12)

kH = 1 +
HT

HM

. (13)

It is well known that the cross-sectional profiles of normalized mean axial velocity
and concentration are Gaussian-like in the zone of established flow (ZEF), i.e.
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where the subscript c denotes the centreline value of the respective quantity, ηw
the velocity spread rate or dimensionless velocity 1/e width, and ηc the concen-
tration spread rate or dimensionless concentration 1/e width. We define λ as the
concentration-to-velocity width ratio, i.e.

λ = ηc/ηw. (16)

It should be noted that ηw , ηc and λ are not necessarily constant as the buoyant
jet evolves from jet-like to plume-like. Equation (15) can also be used to describe the
cross-sectional distribution of the effective gravitational acceleration ∆ (= (∆ρ/ρa)g)
if c is replaced by ∆.

With the above Gaussian assumption and the variables kM , kH and λ, (6) and (7)
can be integrated over the cross-sectional area to yield the conservation equations for
momentum and buoyancy fluxes respectively:
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where B is the total buoyancy flux. There are six unknowns in the above two
equations for a given z: kM , kH , λ, ηw , wc and ∆c. To solve the equations, most
first-order integral models make the following two simplifications: (i) the turbulent
momentum and mass fluxes are ignored by assuming that kM and kH are equal to 1,
and (ii) the concentration-to-velocity width ratio λ is assumed to be a constant, and
usually the value of the plume width ratio λp is adopted since any buoyant jet will
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eventually become plume-like. This is despite the fact that some previous experiments
(e.g. Papanicolaou & List 1988) have shown that λ actually varies from jet to plume.
With the above simplifications, the number of unknowns reduces to three, ηw , wc and
∆c. Either a constant velocity spread rate assumption (i.e. ηw = constant) (e.g. Wood
et al. 1993) or an entrainment assumption (e.g. Fischer et al. 1979) can then be used
to close the set of conservation equations. The two closure assumptions are related
as Jirka & Harleman (1979) were able to derive the entrainment function based on
the constant velocity spread rate assumption (see also Wood et al. 1993).

The entrainment hypothesis was made by Morton, Taylor & Turner (1956) as

dQ

dz
=

d

dz
(πw̄cη

2
wz

2) = 2παηwzw̄c, (19)

where Q is the volume flux and α the entrainment coefficient. Previous experiments
have shown that the entrainment coefficients for jets and plumes differ. List (1982)
summarized much of the work on the entrainment hypothesis and proposed values
of αj = 0.0535 for jets and αp = 0.0833 for plumes. The entrainment coefficient varies
from αj to αp during the transition from jet-like to plume-like. To model this variation,
two types of formulation are commonly used in the existing integral models. One was
derived based on the conservation of energy by Priestley & Ball (1955) as

α = αj − (αj − αp)
(
R

Rp

)2

. (20)

The other is an empirical function proposed by List (1982):
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R
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)2
]
. (21)

In the above two equations, R is the local Richardson number defined as

R =
QB1/2

M5/4
(22)

that represents the ratio of buoyancy to inertial force. It varies from 0 in jets to a
constant value (Rp) in plumes. Both (20) and (21) are essentially different types of
interpolation between the entrainment coefficients for jets and plumes that satisfy the
two asymptotic cases.

For the closure of the second-order integral model, an additional three unknowns,
kM , kH and λ, must be solved. Although experimental data for their values in jets and
plumes have been reported before (e.g. Papanicolaou & List 1988), there remains a
lack of quantitative description of how they vary during the transition from jet-like to
plume-like. In the following, we describe a series of experiments on a round buoyant
jet with a specific focus on quantifying the transitional behaviour.

3. Experimental set-up
A schematic diagram of the experimental set-up is shown in figure 1. The experi-

ments were conducted in a 3 m(L)× 1 m(W)× 1 m(H) glass test tank filled with fresh
tap water to a depth of 0.9 m. The sidewalls and bottom wall were made of 15 mm
thick clear glass. A buoyant jet of salt water was driven by a constant-head tank
and discharged from a round port made from a stainless steel hollow tube into the
ambient fresh water. The constant-head tank generated a very consistent discharge
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Figure 1. Experimental set-up for buoyant jet investigations using combined PIV and PLIF.

flow rate, which was adjustable through a valve and monitored by a rotameter. The
flow rate for each experiment was calibrated using a precision measuring cylinder
and a stopwatch. The steel hollow tube was about 0.3 m long, which should generate
a fully developed pipe flow with no swirl at the exit. The tube was located at a
position of 0.6 m from a side panel along the longitudinal centreline of the tank in
consideration of the diffuse angle of the laser light sheet and the PLIF sensitivity.
The submergence of the discharge port was approximately 0.05 m. The temperature
variation from the source to the imaging window was measured to be less than 0.2 ◦C.
Thus the ambient fluid was essentially non-stratified. Water temperature in the test
tank and constant-head tank was maintained to be approximately 25 ◦C, avoiding the
effect of temperature fluctuation on the fluorescence efficiency of the dye tracer. The
laboratory was kept dark during the experiments in order to minimize the possible
impact on PLIF due to ambient light.

The velocity and concentration measurements were based on a combined DPIV/
PLIF approach (Law & Wang 2000). Here only a brief summary of the approach
is given. The light source employed was a dual-cavity pulsed mini Nd:YAG laser
with a maximum repetition rate of 15 Hz for each cavity. The energy level was 25 mJ
per pulse and the pulse duration was about 7 ns. The emitted laser light was green
with a wavelength of 532 nm. The light sheet had a typical thickness of 3 mm and
a divergence angle of 32◦. Two double-image 8-bit digital CCD cameras (Kodak
Megaplus ES1.0) were configured, one for DPIV and the other for PLIF. The spatial
resolution of the cameras was 1008 × 1018 pixels. Both cameras were fitted with a
Nikon 60 mm lens. The PLIF camera was set to single-frame mode while the DPIV
camera worked in double-frame mode. Thus the PLIF image was double-exposed by
the laser pulse pair, the interval of which was determined by the cross-correlation
DPIV requirement. The double exposure improved the PLIF sensitivity. The timing
diagram for the laser and camera synchronization was set in such a manner that both
the measured velocity and concentration were time-mean values during the pulse pair
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interval. The two cameras were pointed to nearly the same area with a typical size
of 18 cm× 18 cm. The overlapped area of the two imaging windows was determined
through spatial reference points during calibration.

Neutrally buoyant polyamid particles with a density of 1.03 × 103 kg m−3 and
mean diameter of 50 mm were chosen as the seeding particles for DPIV. Following
Mei (1996), the error resulting from the density discrepancy between the seeding
particles and water was calculated to be less than 3% at 1 kHz. The error should be
further reduced at the relatively lower energy-containing frequency of the turbulent
fluctuations in jets and plumes.

Rhodamine B was selected as the fluorescent dye tracer for PLIF. According to
Berlman (1971), the absorption spectrum of Rhodamine B is from 460 to 590 nm
with a peak at 550 nm, while its emission spectrum ranges from 550 nm to 680 nm
with a peak at 590 nm. An optical 532 nm band-pass filter was placed in front of the
DPIV camera, allowing only a narrow band of wavelengths around 532 nm scattered
by the seeding particles to pass through. Another optical 590 nm sharp-cut low-pass
filter was attached to the PLIF camera, allowing through only the fluorescent light
emitted from the dye tracer.

The system was capable of recording the DPIV image pairs and PLIF image at
a frequency up to 7 Hz for a few minutes. The relatively long measuring duration
was made possible by employing a RAID cabinet as an intermediate transfer buffer
before the images were slowly processed and written to the hard disk.

In the core of the buoyant jets, a spatial variation of refractive index existed due to
the varying salinity. This index variation can potentially lead to the distortion of the
captured images and hence measurement errors. However, the refractive error was
found to be negligible in the present experiments due to the small density difference
and slender jet width in the measured area.

An inherent limitation in combining DPIV and PLIF is that the spatial PLIF
resolution in the direction perpendicular to the laser sheet is relatively low. This is
because DPIV requires a certain thickness of the laser light sheet to prevent seeding
particles from moving out of plane during the pulse pair interval that may otherwise
lead to a significant bias in the velocity determination. The thickness of the light sheet
would induce a slight spatial smearing of the measured concentrations and velocities.
However, the error can be greatly reduced or even ignored by taking measurements in
an area sufficiently far from the discharge port with the flow dimension much larger
than the light sheet thickness.

Various experiments were carried out to quantify the characteristics of different
parts of the system. Further details of the verification experiments and the calibration
procedures as well as a discussion of this combined approach can be found in Wang
(2000).

The measurements were initiated just after the jet flow became steady in the clear
ambient water. The typical sampling rate was 5 Hz and the duration of sampling
was 60 s. The relatively short duration avoided self-contamination and accumulation
of dye and seeding particles in the region between the laser source and the image
area caused by the re-circulation within the confinement of the tank, which would
otherwise significantly attenuate the laser light and affect the PLIF readings. The
adopted sampling duration should be adequate for statistical turbulence analysis,
as it is much longer than the large-scale times (using the formula suggested by
Papanicolaou & List 1989) estimated to be 0.8 s and 2.8 s for the jets and plumes
respectively in this study.

The combined DPIV and PLIF set-up can be used to determine the mean charac-
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r range of z range of ∆ρ0/ρa
Exp. image (mm) image (mm) w0 (m s−1) D (mm) (%) Re Lm (mm)

PSDAJ1 (D) −36.0–36.9 −8.7–64.9 0.570 9.4 0 6000 ∞
PSDAJ2 (D) −35.8–37.8 64.4–138.7 0.570 9.4 0 6000 ∞
PSDAJ3 (D) −36.2–37.5 138.1–212.5 0.570 9.4 0 6000 ∞
PSDAJ4 (D) −35.8–38.8 211.8–287.1 0.570 9.4 0 6000 ∞
PSDAJ5 (D) −58.2–61.8 285.8–407.0 0.570 9.4 0 6000 ∞
PSPAJ1 (P) −111.3–112.5 −4.2–221.8 0.570 9.4 0 6000 ∞
PSPAJ2 (P) −115–108.6 123.2–349.0 0.570 9.4 0 6000 ∞
PSDPAJ1 (D) −84.8–79.3 177.8–343.5 2.520 4.5 0 12700 ∞

(P) −94.3–87.0 166.9–350.0
BSDPAJ2 (D) −114.2–112.5 299.8–70.9 1.823 4.5 1.17 9190 340

(P) −127.6–112.4 308.0–65.6
BSDPAJ4 (D) −114.2–112.5 299.8–70.9 1.258 4.5 2.88 6340 149

(P) −127.6–112.4 308.0–65.6
BSDPAJ5 (D) −114.2–112.5 299.8–70.9 1.886 4.5 2.88 9510 224

(P) −127.6–112.4 308.0–65.6
BSDPAJ6 (D) −116.0–111.4 297.0–67.3 0.173 9.4 2.84 1820 30

(P) −129.4–111.1 305.6–62.7
BSDPAJ7 (D) −116.0–111.4 297.0–67.3 0.432 9.4 2.84 4550 75

(P) −129.4–111.1 305.6–62.7
BSDPAJ8 (D) −106.5–105.4 506.0–292 1.006 4.5 2.84 5070 120

(P) −115.2–106.8 513.8–289.6
BSDPAJ9 (D) −106.5–105.4 506.0–292 1.886 4.5 2.84 9510 226

(P) −115.2–106.8 513.8–289.6
BSDPAJ10 (D) −109.5–102.5 505.0–290.9 0.147 9.4 2.84 1550 25

(P) −117.8–104.8 511.7–286.9
BSDPAJ11 (D) −109.5–102.5 505.0–290.9 0.403 9.4 2.84 4250 70

(P) −117.8–104.8 511.7–286.9
BSDPAJ12 (D) −109.5–102.5 505.0–290.9 0.288 9.4 2.84 3030 50

(P) −117.8–104.8 511.7–286.9

Table 1. Initial parameters of buoyant jet experiments: (D) denotes DPIV measurement
and (P) PLIF.

teristics and the second-order turbulence correlations for jets and plumes, in which
most of the turbulence energy is contained by low-frequency and large-scale eddies.
This was demonstrated by Papanicolaou & List (1988) who showed that the tur-
bulent energy production occurs primarily in the range 0.1–1 Hz, and from 0.1 to
3 Hz the spectral turbulent energy decreases over two orders of magnitude. However,
the ability of the set-up to resolve details at higher frequencies is rather poor, being
handicapped by the maximum measurement frequency of only 7 Hz. Furthermore,
the spatial velocity resolution in the light sheet plane is rather coarse at 5.7 mm based
on interrogation areas of 32 × 32 pixels with 50% overlapping. This resolution is
larger than the Komogorov length scale in the range of 0.1–1.0 mm in the study area.
Hence, despite the fact that the mean and second-order quantity determination is sat-
isfactory, comprehensive analysis for the turbulence spectrum or dissipation cannot
be performed.

The parameters of the different experiments are listed in table 1, where D is the
port diameter, w0 the initial discharge velocity, ∆ρ0 the initial density difference, and
Lm the characteristic length scale defined as (Fischer et al. 1979)

Lm = M
3/4
0 /B

1/2
0 , (23)
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where M0 and B0 are the initial momentum and buoyancy fluxes respectively. In
Exps. PSDAJ1–5, only DPIV was conducted while in Exps. PSPAJ1–2, only PLIF
was performed. All the other experiments were measured by combining DPIV and
PLIF.

4. Experimental results
Exps. PSDAJ1–PSDAJ5, PSPAJ1–PSPAJ2 and PSDPAJ1 covered a dimensionless

area from the jet exit to z/D = 80 in a pure jet. The experimental data show that
both the mean and turbulent characteristics become self-similar beyond z/D = 25,
which is in agreement with earlier investigations. Exps. BSDPAJ2–BSDPAJ12 were
performed in the jet-like, transitional and plume-like regions in a buoyant jet. The
measurements covered a dimensionless length z/Lm ranging from 0.2 to 20. The
results for a fully developed self-preserving jet (Exp. PSDPAJ1) and plume (Exp.
BSDPAJ10) are presented as representative of jets and plumes respectively. The data
for Exp. BSDPAJ10 were taken in the region 11.5 < z/Lm < 20 which, according to
Papanicolaou & List (1988), is in the asymptotic plume region.

The data relevant to the second-order integral modelling are presented in the
following. Only those data that were acquired in the fully developed region (beyond
z/D = 25) are reported. It should be noted that most of the experimental results
are similar to earlier studies. However, they are still briefly presented here to provide
verification for the curve-fitting as well as to lend support to the new data on turbulent
mass transport.

4.1. Mean and turbulent characteristics of velocity

The centreline mean axial velocity decay in a jet and plume can be described respec-
tively as (e.g. Papanicolaou & List 1988)

jet:

w0

wc
=

1

kjw

z

D
, (24)

plume: √
M0

zwc
=

1

kpw

(
z

Lm

)−2/3

, (25)

or equivalently:

wc = kpwB
1/3
0 z−1/3. (26)

The subscripts 0 and c denote the initial and centreline values respectively. Applying
best-fitting to the experimental data yields the decay constants kjw = 6.48 for jets and
kpw = 4.13 for plumes. In this work, a preceding character j in a subscript denotes a
quantity for jets and p for plumes whereas a subscript without a preceding character
j or p represents the variable for buoyant jets. The value of kjw is in good agreement
with 6.2 suggested by Fischer et al. (1979) and Chen & Rodi (1980) and 6.71 by
Papanicolaou & List (1988), while slightly higher than 6.06 by Panchapakesan &
Lumley (1993 and 5.8 by Hussein et al. (1994). The value of kpw is close to 3.85
measured by Papanicolaou & List (1988) and 3.79 proposed by Chen & Rodi (1980),
but lower than 4.7 by Rouse et al. (1952) and Fischer et al. (1979), while substantially
higher than 3.4 by George et al. (1977) and Shabbir & George (1994). Comparison
of the jet and plume constants reported in different studies are tabulated in tables 2
and 3 respectively.
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kjw ηjw kjc ηjc

√
w′2c
wc

√
u′2c
wc

√
c′2c
cc

z/D Re

Present study 6.48 0.106 5.26 0.129 0.27 0.19 0.224 40–80 12700
Papanicolaou &

List (1988) 6.71 0.104 5.37 0.126 0.25 0.17 0.22 40–110 2460–10900
Panchapakesan &

Lumley (1993a, b) 6.06 0.115 — — 0.24 0.185 — 30–160 11000
Hussein et al. (1994) 5.8 0.106 — — 0.276 0.218 — 15–100 95500
Dahm &

Dimotakis (1990) — — 5.4 — — — 0.225 0–350 5000
Fischer et al. (1979) 6.2 0.107 4.96 0.127 — — — — —
Chen & Rodi (1980) 6.2 0.103 5.0 0.136 — — — — —

Table 2. Comparison of jet characteristics reported in different studies. Note that the orig-
inal cross-sectional distribution of mean axial velocity reported by Hussein et al. (1994) is
w̄/wc = exp−78.4(r/(z − 4D))2]. Since it was obtained by curve-fitting of the experimental data
(LDA) at z/D = 70, it can be converted to the format of w̄/wc = exp[−(r/0.106z)2] for comparison.
Also kjc, kpc and ηjc in Papanicolaou & List (1988) are quoted from their previous temperature
measurements rather than their LIF results.

kpw ηpw kpc ηpc

√
w′2c
wc

√
u′2c
wc

√
c′2c
cc

z/Lm z/D ∆ρ0/ρa

Present study 4.13 0.105 11.3 0.109 0.26 0.19 0.42 11.5–20 31–55 < 3%
Papanicolaou &

List (1988) 3.85 0.105 11.1 0.112 0.23 0.15 0.39 5–80 22–80 < 3%
Shabbir &

George (1994) 3.4 0.131 9.4 0.121 0.32 0.19 0.40 6.5–16 10–28 48%
George et al. (1977) 3.4 0.135 9.1 0.124 0.28 — 0.38 7–14 < 16 48%
Rouse et al. (1952) 4.7 0.102 11 0.119 — — — — < 11 —
Fischer et al. (1979) 4.7 0.100 9.1 0.120 — — — — — —
Chen & Rodi (1980) 3.79 0.135 11 0.125 — — — — — —

Table 3. Comparison of plume characteristics reported in different studies. See table 2 caption for
note regarding Papanicolaou & List data.

The mean axial velocity decay along the centreline is plotted in figure 2. The figure
clearly shows that for z/Lm < 0.6, the flow is jet-like, and for z/Lm > 6, the flow is
plume-like. This agrees extremely well with Papanicolaou & List (1988) (z/Lm < 1
for jet-like and z/Lm > 5 for plume-like) and Chen & Rodi (1980) (z/Lm < 0.53
for jet-like and z/Lm > 5.3 for plume-like). The pure jet data points cannot be put
directly into this log-log plot. A horizontal dotted line is thus used to represent their
best-fit line. It can be seen that the decay rate of a buoyant jet in the jet-like region
coincides with the one measured in a pure jet.

The smooth solid curve in figure 2 is obtained by applying curve fitting in the
following form to the data points:

g(ξ) = − 1
3
[1 + tanh(k1ξ − η1)]ξ + log

(
1

kpw

)
+

1

2

[
log

(
1

kpw

)
− log

( √
π

2kjw

)]
[tanh(k2ξ − η2)− 1]− k4 exp[−k3(ξ − η3)

2],

(27)
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Figure 2. Centreline decay of the mean axial velocity in buoyant jets.

where

log

(√
M0

zwc

)
= g(ξ), (28)

ξ = log

(
z

Lm

)
. (29)

The constants in (27) are determined by the least-square method as: k1 = 3.110,
k2 = 2.815, k3 = 6.123, k4 = 0.0797, η1 = 1.831, η2 = 2.067 and η3 = 0.4529. The
kjw = 6.48 and kpw = 4.13 (obtained in this study) are used in the curve-fitting.
Equation (27) automatically satisfies the two asymptotic cases of buoyant jets, i.e.
pure jets and plumes. The Gaussian function (the last term in (27)) helps to make the
curve smoother and match closer the experimental data.

The normalized cross-sectional profiles of mean axial velocity for jets and plumes
collapse onto the respective Gaussian curves given by (14) and (15) exceptionally
well. Again curve-fitting yields the velocity spread rate (or dimensionless 1/e velocity
width): ηjw = 0.106 for jets and ηpw = 0.105 for plumes. It can be seen from table 2
that the measured jet velocity width agrees very well with all other studies except
being slightly thinner than that recorded by Panchapakesan & Lumley (1993a, b). On
the other hand, the plume velocity width, while agreeing with Rouse et al. (1952),
Fischer et al. (1979) and Papanicolaou & List (1988), is however about 30% thinner
than that reported by George et al. (1977), Chen & Rodi (1980), and Shabbir &
George (1994). From table 3, we note that a major difference among the experimental
parameters of George et al. (1977), Shabbir & George (1994) and the present study
is the initial density difference. The former two adopted a very high initial density
difference of about 48% whereas a value of 2.84% was used here. Obviously, the
Boussinesq approximation cannot be applied to the near field of the former two
cases and, as a result, the temperature field may not be dynamically passive. Chen
& Rodi (1980) reviewed the existing experimental data on buoyant jets. They noted
the effect of large initial density difference on the behaviour of buoyant jets and
took into account the effect by adding a factor of the initial density ratio in the
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Figure 3. Variation of the velocity and concentration width with z/Lm in buoyant jets.

formulation of plume centreline velocity and concentration. We also note that the
plume studied here is a water plume in contrast to the air plume measured by
George et al. (1977) and Shabbir & George (1994). The Schmidt number in water
is a few hundred times higher than that in air due to the lower molecular diffusion
in water. The effect of Schmidt number on turbulent mixing is generally ignored
when the overall mixing is of interest, as molecular diffusion is thought to be small
compared to the turbulent diffusion. However, noticeable effects have been reported
by some experimental turbulent mixing studies. For example, Dahm & Dimotakis
(1990) found that pure ambient fluid was present at a water jet centreline with a
probability of up to 30% whereas no such unmixed fluid was found in a comparable
air jet. Furthermore, unlike the present plume measurements that were taken in the
region z/D = 31–55, the experiments of Shabbir & George (1994) were performed in
the region z/D = 10–28 where the turbulent flow might not be exactly fully developed.

The variation of the dimensionless velocity width ηw during the transition from
jet-like to plume-like was measured to be within 3% (see figure 3), implying that the
velocity width is essentially constant during the transition. This validates the widely
accepted assumption that the rate of velocity expansion of buoyant jets is independent
of the type of flow (jet-like or plume-like) that is commonly employed in the integral
models as a closure equation (e.g. Abraham 1963; List & Imberger 1973; Jirka &
Harleman 1979; Wood et al. 1993; etc.). Peterson & Bayazitoglu (1992) performed
buoyant jet experiments in the transitional region with LDA. Their measurements
also confirmed this assumption.

The centreline velocity fluctuations in the axial and radial directions,
√
w′2c /wc and√

u′2c /wc, were recorded to be about 27% and 19% for jets, and 26% and 19%
for plumes respectively, and are within the range reported in the literature. The

cross-sectional variations of turbulent normal and shear stresses,
√
w′2/wc,

√
u′2/wc

and w′u′/wc2, for jets and plumes are plotted in figures 4–6. The profiles of w′u′/wc2

have a peak value of approximately 0.020 at r/z ≈ 0.62 for jets and 0.021 at
r/z ≈ 0.68 for plumes. As a comparison, a peak value of 0.018 for jets was recorded
by Panchapakesan & Lumley (1993a, b), 0.021 for jets by Hussein et al. (1994), 0.026
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Figure 4. Cross-sectional variation of turbulent intensity of the axial velocity
in (a) jets and (b) plumes.

for plumes by Shabbir & George (1994), and much lower values of 0.012 for jets and
0.013 for plumes by Papanicolaou (1984). These figures show that there is actually no
distinct difference in the turbulent normal and shear stresses between jets and plumes,
which implies that buoyancy has no direct effect on turbulence velocity fluctuations.
The buoyancy affects the plume behaviour mainly through the mean velocity. This
observation is consistent with George et al. (1977), Papanicolaou & List (1988), and
Shabbir & George (1994). It is also supported by the experimental data in the fully
developed transitional region of the present study.

4.2. Mean and turbulent characteristics of concentration

The centreline mean concentration decay in a jet and plume can be described respec-
tively as (e.g. Papanicolaou & List 1988)
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Figure 5. Cross-sectional variation of turbulent intensity of the radial velocity
in (a) jets and (b) plumes.

jet:

c0

cc
=

1

kjc

z

D
, (30)

plume:

C0Q0

zcc
√
M0

=
1

kpc

(
z

Lm

)2/3

. (31)

Replacing c with ∆ in (31) yields the centreline buoyancy decay equation:

∆c = kpcB
2/3
0 z−5/3. (32)

Again curve fitting to the experimental data yields kjc = 5.26 and kpc = 11.3. The
corresponding best-fit lines are shown in figure 7. The value of kjc compares well with
5.4 by Dahm & Dimotakis (1990), 5.37 by Papanicolaou & List (1988), 4.96 by Fischer
et al. (1979) and 5.0 by Chen & Rodi (1980). For kpc, there exists some disagreement
among the existing data. A value of 11 was reported by Rouse et al. (1952) and Chen
& Rodi (1980), and 11.1 by Papanicolaou & List (1988), whereas 9.1 was obtained by
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Figure 6. Cross-sectional variation of the normalized turbulent shear stress
in (a) jets and (b) plumes.

George et al. (1977) and Fischer et al. (1979), and 9.4 by Shabbir & George (1994).
It should be pointed out that the concentration decay constants of Papanicolaou &
List are quoted from their earlier temperature measurements rather than their LIF
results, since they realized that the LIF measurements overestimated the absolute
time-averaged mean concentration. However, this should not significantly affect other
quantities that were normalized by the corresponding centreline values.

The centreline decay of mean concentration in a buoyant jet is plotted in figure 7.
Again the pure jet data are represented by their best-fit line (horizontal dotted line
in the figure). The experimental data agree well with the asymptotic solutions, i.e. for
z/Lm < 0.6 the flow is jet-like and for z/Lm > 6 the flow is plume-like. The smooth
solid curve in the figure is computed from the second-order mass flux conservation
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Figure 7. Centreline decay of the mean concentration in buoyant jets.

equation that will be introduced later. The experimental data collapse onto the
theoretical curve quite well, indicating that the total mass flux is conserved within
experimental errors.

The normalized cross-sectional profiles of mean concentration for jets and plumes
follow the Gaussian distribution described by (15). The concentration spread rates
(or dimensionless 1/e concentration widths) are determined to be: ηjc = 0.129 for
jets and ηpc = 0.109 for plumes. Comparison with the literature (see tables 2 and 3)
shows that the concentration width for jets obtained in the present study is in good
agreement with others, while the concentration width for plumes is on the lower side.
Unlike the velocity width, the concentration widths are quite different between jets
and plumes, varying from 0.129 for jets to 0.109 for plumes. Similar observations were
also reported in previous studies such as Papanicolaou & List (1988). The variation
of concentration width during the transition from jet to plume is thus of interest. The
experimental data are also plotted in figure 3. It can be seen that this variation is
z/Lm-dependent.

The concentration fluctuations
√
c′2c /cc at the centreline were found to be about

22.4% for jets and 42% for plumes, in good agreement with past information. The
cross-sectional profiles of concentration fluctuation for jets and plumes are shown in
figures 8(a) and 8(b) respectively. It can be seen that the presence of buoyancy almost
doubles the concentration fluctuations in plumes compared to jets. This is contrary to
the buoyancy effect on turbulence velocity fluctuations discussed previously. Replaying
the recorded DPIV vector maps and PLIF images showed that the flapping of the
flow and the resulting intermittency are more pronounced in plumes than in jets.
This observation was also noted by Papanicolaou & List (1989). The variation of
centreline concentration fluctuations in a buoyant jet is plotted in figure 9. The figure
clearly shows that the concentration fluctuation intensity is z/Lm dependent in the
transitional region.

4.3. Characteristics of turbulent mass transport

Quantifying the turbulent mass transport in buoyant jets is one of the primary goals of
this study. The cross-sectional variations of axial and radial turbulent mass transport
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Figure 10. Cross-sectional variation of axial turbulent mass transport in (a) jets and (b) plumes.

in jets and plumes are plotted in figures 10 and 11 respectively. Figure 10(a) shows
that the normalized axial turbulent mass transport along the jet centreline, w′cc′c/wccc,
has an average value of approximately 0.024. This value is within the range of past
measurements of 0.03 by Antonia, Prabhu & Stephensen (1975), 0.021 by Chevray &
Tutu (1978), and 0.020 by Papanicolaou & List (1988). The profiles of radial mass
transport u′c′/wccc for jets (see figure 11a) collapse very well, with a peak value
of approximately 0.018 located at r/z ≈ 0.7, which is slightly higher than 0.015
by Papanicolaou & List (1988). More recently, Webster, Roberts & Ra’ad (1999)
obtained similar turbulent mass transport results in a turbulent jet with combined
digital particle tracking velocimetry (DPTV) and PLIF.

The centreline value of the normalized axial turbulent mass transport measured
in plumes is about 0.05 (see figure 10b), in good agreement with 0.05 recorded by
Papanicolaou & List (1988) and 0.056 by Shabbir & George (1994). Figure 10(b) also
shows that the two off-centreline peaks are slightly higher than the centreline value.
The radial mass transport in plumes has a peak value of about 0.031 at r/z ≈ 0.7, as
shown in figure 11(b). This is comparable to 0.028 by Shabbir & George (1994) but
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Figure 11. Cross-sectional variation of radial turbulent mass transport in (a) jets and (b) plumes.

higher than 0.020–0.025 reported by Papanicolaou & List (1988). Comparison between
the jet and plume results shows that the axial and radial turbulent mass transports
in plumes are almost twice those in jets, which could be a direct consequence of the
nearly double concentration fluctuation in plumes.

4.4. Curve-fitting results of turbulent characteristics in jets and plumes

An important advantage of combined DPIV and PLIF is that an adequate two-
dimensional planar distribution for velocity and concentration fields can be acquired
within a short duration. This is in contrast to using a point-based instrument that
typically requires an experimentation time in the order of hours to resolve the
cross-sectional distribution of the physical quantities. Unexpected changes in the ex-
perimental conditions may occur in such a long time (e.g. positioning error introduced
by the traversing system, ambient temperature variation, self-contamination, incon-
sistency of the exit conditions, etc.). The advantage of the current approach could
explain the generally less scatter in the data reported here. The twin 1k×1k resolution
digital cameras provide very high spatial data density and thus are also potentially
more accurate in identifying the cross-sectional profiles as well as determining the
flux-related quantities.
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Pure axisymmetric jet Pure axisymmetric plume

A kg η0 A kg η0√
w′2/wc 0.2151 83.46 0.07318 0.2361 113.4 0.07222√
u′2/wc 0.1513 75.49 0.07672 0.1533 90.51 0.07578

w′u′/wc2 0.06110 129.4 0.01691 0.02084 224.4 0.06815√
c′2/cc 0.1900 73.15 0.09360 0.3323 97.12 0.07023

w′c′/wccc 0.02276 143.1 0.06788 0.04818 183.6 0.05893
u′c′/wccc 0.02381 129.2 0.05392 0.03607 163.9 0.05199

Table 4. Curve-fitting results for turbulence quantities.

The turbulence data are fitted with empirical curves in the forms

f(η) = A{exp[−kg(η − η0)
2] + exp[−kg(η + η0)

2]} (33)

for the quantities with a symmetric cross-sectional distribution and

f(η) = A{exp[−kg(η − η0)
2]− exp[−kg(η + η0)

2]} (34)

for those with an antisymmetric cross-sectional distribution, where η = r/z. The
constants A, kg and η0 are determined using the least-square method. The results are
tabulated in table 4.

4.5. Data verification using theoretical criteria

Using the combined DPIV and PLIF approach, an enormous amount of planar
information was captured with high spatial density. This enables a close examination
of the data quality with the available theoretical criteria. It has been shown that
the cross-sectional profiles in the present study satisfy the symmetry or antisymmetry
requirement very well. Additional verification includes the closure check on momen-
tum and mass flux conservation, turbulent shear stress and radial turbulent mass
transport. The verification is necessary and important as the experimental data will
be used as the basis for the proposed second-order integral model.

4.5.1. Momentum and mass flux conservation

Based on the curve-fitting results reported previously, it can be computed that

kjM = 1 +
MTP

MM

= 1.10, (35)

kpM = 1 +
MTP

MM

= 1.10, (36)

kjH = 1 +
HT

HM

= 1.076, (37)

kpH = 1 +
HT

HM

= 1.15. (38)

Equations (35) and (36) show that the momentum flux contributed by the turbulence
and streamwise pressure gradient is about 10% of the mean momentum flux in both
jets and plumes. The same percentage in jets and plumes is a result of the similarity
in the turbulence velocity field as illustrated previously. As a comparison, a value of
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4.6% for plumes was reported by Shabbir & George (1994). The difference between
the current study and Shabbir & George (1994) is mainly due to the difference in ηpw .
Papanicolaou & List (1988) reported a percentage of 15% for both jets and plumes
without taking into account the negative contribution from the streamwise pressure
gradient. On the other hand, (37) and (38) indicate that the amount of turbulent mass
flux is very different for jets and plumes. It takes the values of 7.6% and 15% of the
mean mass flux in jets and plumes respectively. These percentages are certainly not
trivial and should be accounted for in the integral models.

In a jet, the total momentum flux is conserved and equal to the momentum flux
introduced at the source. This imposes a constraint on the experimental constants:

kjMk
2
jwη

2
jw = 0.5. (39)

Substituting the measured constants in the above equation yields a momentum
conservation error of 3% in the jet experiments. For plumes, (6) dictates

2
3
kpMk

2
pwη

2
pw = kpcη

2
pc. (40)

The plume results from the present study satisfy the above equation with an error
of 2%.

The total mass (buoyancy) flux should be conserved and equal to the source flux
in both jets and plumes. Thus, the following constraints apply:

kjH
kjwkjcη

2
jwη

2
jc

η2
jw + η2

jc

= 0.25, (41)

kpH
πkpwkpcη

2
pwη

2
pc

η2
pw + η2

pc

= 1. (42)

Substituting the jet and plume results into the above equations shows that 98%
and 96% of the source mass flux is conserved in the jet and plume experiments
respectively. The closure errors are very small, implying good data accuracy.

4.5.2. Radial mass and momentum transport

Integrating (3) and (2) across the cross-sectional area of the buoyant jet from 0 to
r with the help of (1) yields

∂

∂z

∫ r

0

(wc+ w′c′) r dr + (uc+ u′c′)r = 0, (43)

∂

∂z

∫ r

0

(w̄2 + w′2 − u′2) r dr + (wu+ w′u′)r −
∫ r

0

g
∆ρ

ρa
r dr = 0. (44)

The above equations reflect the balance of the axial and radial transport of
momentum and mass in a control volume centred at the axis of the buoyant jet with
a radius r, as sketched in figure 12. Equation (43) shows that in the control volume,
the axial rate of change of the total axial mass flux is balanced by the total radial mass
flux, while (44) indicates that the axial rate of change of the total axial momentum
flux is balanced by the radial mean and turbulent flux of the axial momentum, the
buoyancy force and the streamwise pressure gradient. The variation of individual
terms in the two equations in both jets and plumes are plotted in figures 13 and 14.
The ‘error’ terms in the figures represent the residue of the left-hand side of the above
equations.

Figures 13(a) and 13(b) show that the rate of loss of axial turbulent mass flux is very
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Control volume

Radial mean and turbulent
mass and momentum fluxes

Axial mean and turbulent
mass and momentum fluxes

r

Figure 12. Sketch showing the balance of the axial and radial mass and momentum transports in
a control volume.

small compared with that of axial mean mass flux. The loss of total axial mass flux
in the control volume is balanced mainly by the outward radial turbulent mass flux.
This implies that the tracer mass is transported laterally through turbulent diffusion.
A distinct difference between the two figures is that in jets, the radial mean mass
flux is positive (outward) when r/z < 0.12 and becomes negative (inward) beyond
this range, whereas in plumes, the critical point is much closer to the centreline,
at r/z ≈ 0.06. As a result, the inward radial mean mass flux is more pronounced
in plumes than in jets, and the lateral transport of tracer mass depends more on
the radial turbulent diffusion in plumes. It should be noted that when the radial
mean mass flux becomes negative (inward), the tracer mass can still be transported
outwards through turbulent diffusion. All terms in (43) become zero when r/z → ∞,
implying that the total axial mass flux is conserved. Equation (43) provides a way to
theoretically compute the radial turbulent mass transport and therefore constitutes a
criterion to check the experimental results. The small magnitude of the error terms
in figure 13 confirms the quality of the measured radial turbulent mass transport in
this study. The errors are not only due to the possible underestimation of the radial
turbulent mass transport but also the inaccuracy in quantifying other quantities as
well as the curve-fitting procedures. Furthermore, compared with the mean axial mass
transport, the turbulent mass transports in both the axial and radial directions are
of second order. Hence, the error terms in figure 13 are indeed very small. In terms
of measurement techniques, there is little difference between the radial and axial
turbulent mass transport. This would imply that the axial turbulent mass transport
determined in the present study is also of high quality.

Figure 14(a) shows that in jets the loss of total axial momentum flux along the axial
direction in the control volume is balanced mainly by the outward radial turbulent
axial-momentum flux (rw′u′), i.e. the axial momentum is transported laterally mainly
through turbulent diffusion. Beyond r/z ≈ 0.12, the radial mean axial-momentum
flux (rwu) becomes negative and the axial momentum is transported laterally by
overcoming this inward advective flux. Again all terms in the figure approach zero
when r/z → ∞, implying that the total axial momentum flux including the contri-
bution of streamwise pressure gradient is conserved. The lateral transport of axial
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Figure 13. Balance of the axial and radial mass transports in a control volume
in (a) jets and (b) plumes.

momentum relies more on the radial turbulent diffusion in plumes (see figure 14(b)).
When r/z > 0.06, the transport is achieved by overcoming the inward advection.

Unlike the jet case, the lateral transport of axial momentum in plumes does not
necessarily result in a loss of it in the control volume. In fact, beyond r/z ≈ 0.065, the
axial momentum contained in the control volume starts to increase. This is because
the buoyancy force produces much of the additional momentum. When r/z → ∞,
i.e. the control volume becomes the entire cross-sectional area of the plume, the
radial mean and turbulent axial-momentum fluxes approach zero. Therefore the rate
of increase of total axial momentum flux including the contribution of steamwise
pressure gradient is equal to the buoyancy force. This has already been illustrated in
(6). Equation (44) provides an approach to theoretically compute the radial turbulent
axial-momentum transport, i.e. the turbulent shear stress, and therefore constitutes a
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Figure 14. Balance of the axial and radial axial-momentum transports in a control volume
in (a) jets and (b) plumes.

criterion to check the experimental results. The small magnitude of the error terms in
figure 14 confirms the quality of the measured shear stresses.

4.6. Experimental results concerning the second-order integral model

4.6.1. Relationship between local Richardson number R and z/Lm

As shown previously, for a vertical buoyant jet, z/Lm is an important parameter to
characterize the flow transition from jet-like to plume-like. However, this transition
also occurs in other situations such as horizontal buoyant jets or buoyant jets in
a cross-flow where z/Lm is not applicable. Since the conclusions (e.g. the variations
of shear entrainment coefficient, concentration spread rate and HT/HM during the
transition) drawn from the vertical buoyant jet case may also be applicable to other
situations, it is preferable to use the more commonly used local parameters such as the
local Richardson number R rather than z/Lm to quantify the transitional variations



422 H. Wang and A. W-K. Law

0.6

0.5

0.4

0.3

0.2

0.1

0 2 4 6 10 12 20
z/Lm

R

8 181614

Plume Richardson number

Figure 15. Variation of the local Richardson number with z/Lm in buoyant jets.

of the flow characteristics. We will therefore derive the relationship between R and
z/Lm as follows.

The present study shows that kM and ηw are nearly constant throughout the
transition, i.e. kM = kjM = kpM = 1.1 and ηw = ηjw = ηpw = 0.105. Also, in a non-
stratified environment, we have B = B0. Together with the empirical curve fitting
equations (27), (28) and (29) for wc, the relationship between R and z/Lm can be
established based on (22) as

R = 25/4π−1/4k
−5/4
M η−1/2

w 103g(ξ)/2 z

Lm
, (45)

The above equation shows that the local R is directly related to z/Lm. Their
relationship is plotted in figure 15. In pure jets, both z/Lm and R are zero. In the
jet-like region, R increases linearly with z/Lm. The relationship becomes nonlinear in
the transitional region and subsequently R becomes constant in the plume-like region.
The constant is called the plume Richardson number, Rp, which is determined to be
0.584 in the experiments.

4.6.2. Variation of entrainment coefficient

As mentioned previously, the entrainment coefficient in a buoyant jet can be
modelled by (20) or (21). However, there have been few experimental evaluations of
the prediction accuracy of these two commonly used formulations in the transitional
region from jet-like to plume-like. In this study, a large amount of experimental data
was obtained in the transitional region, and the empirical curve fit result for the
centreline mean axial velocity is very close to the experimental data (see figure 2). We
are thus able to give an evaluation of the two formulations.

With the help of the centreline axial velocity curve fit equations (27), (28) and (29),
the variation of α with z/Lm can be derived based on the entrainment assumption
equation (19) as

α =
ηw

2

[
1− dg(ξ)

dξ

]
, (46)

with αj = ηjw/2 = 0.0525 for jets and αp = 5ηpw/6 = 0.0875 for plumes. The
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Figure 16. Variation of the entrainment coefficient with the local Richardson number
in buoyant jets.

relationship between α and R can then be determined implicitly by (45) and (46). The
results are shown in figure 16. It can be observed that the experimental curve is not as
smooth as expected. This is caused by the derivative operation on the empirical curve
fit obtained on a log-log graph as shown in figure 2. Despite the small undulation,
it can be seen that both (20) and (21) are in good agreement with the experimental
curve, with the former appears to be more realistic. We will thus adopt (20) for the
second-order integral model.

4.6.3. Variation of concentration-to-velocity width ratio λ

As shown previously in figure 3, while the velocity spread rate remains nearly
constant during the transition from jet to plume, the concentration spread rate varies.
This results in a varying λ. Although the variation of concentration spread rate
is relatively small, it would lead to an error of up to 15% in the conservation of
mass flux if ignored. Therefore, modelling this variation is very important to achieve
second-order closure. In the existing integral models, the width ratio λ is generally
assumed to be a constant (e.g. Fischer et al. 1979; Wood et al. 1993) and usually the
value of the plume width ratio λp is adopted due to the fact that any buoyant jet will
eventually become plume-like. A previous study by Noutsopoulos & Yannopoulos
(1987) did not assume a constant λ in their integral model. Instead, they assumed that
ηw(1 + λ2) = constant. Together with a semi-empirical z/Lm-dependent expression of
the velocity spread rate ηw , they were able to obtain an analytical solution of the
vertical buoyant jet. Their results led to a nearly constant concentration spread rate
and a z/Lm-dependent velocity spread rate with 20% variation from jet to plume,
which differs significantly to the observations here.

The variation of λ with R can be computed based on figure 3 and (45), and the
results are plotted in figure 17. The figure shows that λ varies from λj = 1.23 to
λp = 1.04 during the transition. As a comparison, λj = 1.21 and λp = 1.06 were
reported by Papanicolaou & List (1988). To provide a simple empirical quantitative
description of the relationship between λ and R, the following form is used for the
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interpolation between λj and λp:

λ = λj − (λj − λp)
(
R

Rp

)σ
, (47)

where σ = 1.5 fits reasonably well the experimental data. Equation (47) with σ = 1.5,
λj = 1.23 and λp = 1.04 is thus proposed for the relationship between λ and R.

4.6.4. Turbulent mass flux

The cross-sectional profiles of axial and radial turbulent mass transport of buoyant
jets have similar shapes to those of jets (see figures 10a and 11a) and plumes (see
figures 10b and 11b) but with the magnitudes varying in between. Of particular interest
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here is the variation of the ratio of axial turbulent mass flux to axial mean mass
flux, HT/HM , because the ratio is important for the total mass flux conservation.
The cross-sectional profiles of axial turbulent mass transport in the zone of flow
establishment are integrated individually and the ratio, HT/HM , is plotted with
respect to R in figure 18. Despite the scatter among the experimental data, the trend
of the variation is reasonably well captured. Again, to model this variation, a simple
empirical interpolation equation can be used in the form

HT

HM

=

(
HT

HM

)
j

−
[(

HT

HM

)
j

−
(
HT

HM

)
p

](
R

Rp

)σ
, (48)

where σ = 2 appears to fit reasonably well the experimental data. Equation (48)
with σ = 2, (HT/HM)j = 7.6% and (HT/HM)p = 15% are thus proposed for the
relationship between HT/HM and R. The above equation can be rewritten in terms
of the ratio of total mass flux to mean mass flux, kH , as

kH = kjH − (kjH − kpH )

(
R

Rp

)σ
, (49)

where σ = 2, kjH = 1.076 and kpH = 1.15.

5. Second-order integral model of buoyant jets
Based on the above findings, a second-order integral model can finally be formulated

for a vertical buoyant jet discharging into a stagnant uniform ambient. The model
covers the full transition from jet-like to plume-like. The balance equations for mass
and momentum are computed to second-order, which means the turbulent momentum
and mass fluxes as well as the variation of concentration-to-velocity width ratio during
the transition are all taken into account. The proposed model can be modified to
suit other situations of buoyant jets to achieve second-order closure of both total
momentum and mass fluxes. The individual equations for the model have already
been put forward previously. They are summarized as follows:

continuity:

dQ

dz
=

d

dz
(πw̄cη

2
wz

2) = 2παηwzw̄c, (50)

momentum:
dM

dz
=

d

dz

(
kM
π

2
w̄2
c η

2
wz

2

)
= π∆cλ

2η2
wz

2, (51)

buoyancy flux conservation:

dB

dz
=

d

dz

(
kH

λ2

1 + λ2
πwc∆cη

2
wz

2

)
= 0, (52)

entrainment coefficient:

α = αj − (αj − αp)
(
R

Rp

)2

, (53)

concentration-to-velocity width ratio:

λ = λj − (λj − λp)
(
R

Rp

)3/2

, (54)
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Ratio of the total mass flux to the mean:

kH = kjH − (kjH − kpH )

(
R

Rp

)2

, (55)

where

R = 25/4π1/4k
1/2
H k

−5/4
M w

−1
c ∆

1/2

c λη
3/2
2 (η2

c + η2
w)−1/2z1/2. (56)

All constants involved in the above set of equations have already been calibrated:
αj = 0.0525, αp = 0.0875, λj = 1.23, λp = 1.04, kjH = 1.076, kpH = 1.15, kM = 1.1,
Rp = 0.584. After substituting (56) into (53), (54) and (55), the remaining unknowns

are α, λ, kH , ηw , wc and ∆c. With the six equations (50)–(55), the six unknowns can
be readily solved using numerical methods. The initial conditions can be given at the
end of the zone of flow establishment (ZFE) using models such as Abraham (1963),
Lee, Jirka & Harleman (1974) and Lee (1980).

6. Summary
Simultaneous measurements of turbulent velocity and concentration fields of round

vertical pure jets and buoyant jets have been reported using a combined DPIV and
PLIF approach. A unique feature with the combination of the two experimental
techniques is that the covariance of the instantaneous velocity and concentration fields
is readily revealed. This provides more insight into the mixing processes than if the two
techniques are individually performed. Comprehensive self-checks on the symmetry,
mass and momentum conservation, turbulent shear stress and radial turbulent mass
transport are examined based on the large amount of planar information obtained.
The validation shows that good data quality was achieved.

The jet and plume results are mostly in agreement with those reported previously
in the literature. The differences between the plume data obtained in the present
study and those based on temperature measurements in air are however noted. In the
fully developed region, the buoyancy has no apparent effect on turbulence velocity
fluctuations. In contrast, the concentration fluctuations are significantly intensified by
the buoyancy force. This is accompanied by the increased turbulent mass transport.

The radial mass transport and turbulent shear stress are found to be of first-order
importance in the turbulence modelling of buoyant jets. Nevertheless, the integral
models avoid modelling these terms by integrating the governing differential equation
over the cross-sectional area. Although the axial turbulent mass and momentum fluxes
are of second-order compared with the axial advective fluxes, they are not negligibly
small and should be incorporated for better prediction.

The measurements in the transitional region detailed the evolution from jet-like to
plume-like and provided the experimental basis for the integral modelling effort. It
has been shown that the variations of axial turbulent mass flux and concentration-
to-velocity width ratio can also be appropriately modelled as functions of the local
Richardson number, while the momentum flux contributed by the turbulence and
streamwise pressure gradient can be taken into account as a fixed percentage of the
mean. Other than the vertical buoyant jet in stagnant fluid, the proposed second-order
integral model can be modified to suit more complicated flow configurations. This
will be further explored in future studies.

Funding for this study provided by the Academic Research Fund (11/96) of the
Nanyang Technological University is gratefully acknowledged.
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